
GEOMETRIC REPRESENTATION THEORY OF THE HILBERT SCHEMES

PART III

ALEXANDER TSYMBALIUK

Abstract. Realizing the fixed point basis in the equivariant cohomology of (C2)[n] as the

Jack polynomials, we prove an equivariant version of the Lehn theorem for X = C2.

1. The first Chern class of the tautological bundle

Let Zn ⊂ X [n] × X be the universal family over X [n] and p denote its projection to X [n].
Then Tn := p∗O(Zn) is a rank n vector bundle over X [n], called the tautological bundle.1 In
this section we compute the cup product operator c1(Tn) ∪ • : H∗T (X

[n]) → H∗T (X
[n]). This

operator was first studied in [L] (in the non-equivariant setting). Our exposition follows [N].

1.1. Eigenvectors of c1(Tn)∪.
We start from a straightforward computation of c1(Tn) ∪ • in the fixed point basis.

Lemma 1.1. The operator c1(Tn) ∪ • is diagonalizable in the fixed point basis:

c1(Tn) ∪ [ξλ] = −(n(λ)ϵ1 + n(λ∗)ϵ2)[ξλ],

where n(λ) :=
∑

i(i− 1)λi.

Proof. By definition, we have c1(Tn) ∪ [ξλ] = c1(Tn|ξλ)[ξλ]. It remains to notice that

c1(Tn|ξλ) =
∑l(λ)

i=1

∑λi

j=1(−(i− 1)ϵ1 − (j − 1)ϵ2) = −n(λ)ϵ1 − n(λ∗)ϵ2. �

1.2. Laplace-Beltrami operator.

Definition 1.1. The linear operator �k
N : ΛN → ΛN , defined by

�k
N (f) =

k

2

N∑
i=1

x2
i ∂

2
xi

+
∑
i ̸=j

x2
i

xi − xj
∂xi − r(N − 1)

 , f ∈ Λr
N ,

is called the Laplace-Beltrami operator.

Exercise 1.2. Check ρN+1,N ◦�k
N+1 = �k

N ◦ ρN+1,N .

Hence, we can define a linear operator

�k : Λ → Λ, �k := lim
←−

�k
N .

Those operators are actually diagonalizable in the basis of Jack polynomials:

Proposition 1.3. [M, Exercise VI.4.3(b)] We have: �k(P
(k)
λ ) = (n(λ∗)k − n(λ)) · P (k)

λ .

1 The fiber of Tn at the codimension n ideal I ⊂ C[x, y] is identified with C[x, y]/I. Moreover, its determinant

∧nTn is actually the line bundle O(C2)[n] (1) arising from the Proj-construction of (C2)[n].
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1.3. Geometric interpretation of �k.

Let θT : ΛF
∼−→MT

loc = ⊕HT,BM
∗ (X [n])loc be the isomorphism from the last talk. Identifying

HT,BM
i (X [n]) with H4n−i

T (X [n]), consider a linear operator D : ΛF → ΛF which corresponds to

c1(Tn) ∪ • : H∗T (X
[n]) → H∗T (X

[n]) under this isomorphism.

Theorem 1.4. We have: D = ϵ1 ·�k.

Proof. According to the main result from the last time, we have:

θT : P
(k)
λ 7→ ϵ

−|λ|
1 cλ(k)

−1 · [ξλ], k = −ϵ2/ϵ1.

Therefore D is determined by the condition D(P
(k)
λ ) = ϵ1(n(λ

∗)k−n(λ))P
(k)
λ . Combining with

Proposition 1.3, we get the result. �

The following is straightforward (see Appendix for the proof):

Corollary 1.5. Identifying ΛC ≃ C[p1, p2, . . .], the operator �k is given by

�k =
k

2

∑
m,n>0

mnpm+n∂pm∂pn +
k − 1

2

∑
m>0

m(m− 1)pm∂pm +
1

2

∑
m,n>0

(m+ n)pmpn∂pm+n .

1.4. Lehn’s formula.
In this section we reformulate Corollary 1.5 in a more standard form.
Recall that under the isomorphism θT : ΛF

∼−→MT
loc, the operators pm and −m∂pm correspond

to qϵ2 [−m] = Zϵ2 [−m] and qϵ1 [m] = (−1)m
k Zϵ2 [m] = (−1)m−1Zϵ1 [m], respectively.

Hence, the operator c1(Tn) ∪ • is given by the following formula:

c1(Tn) ∪ • =
ϵ1 + ϵ2

2

∑
m>0

(m− 1)qϵ2 [−m]qϵ1 [m]−

∑
m,n>0

(ϵ2
2
qϵ2 [−m− n]qϵ1 [m]qϵ1 [n] +

ϵ1
2
qϵ2 [−m]qϵ2 [−n]qϵ1 [m+ n]

)
.

Let us now introduce δT : H∗T (X) → H∗T (X) ⊗ H∗T (X) as the adjoint of the cup product
∪ : H∗T (X)⊗H∗T (X) → H∗T (X) with respect to the intersection pairing. In other words, δT is
a push-forward along the diagonal embedding X → X ×X. This is a H∗T (pt)-linear map with
δT (1) = 1⊗ [X] = ϵ1ϵ2 · 1⊗ 1. Iterating δT , we get δrT (1) = (ϵ1ϵ2)

r · 1⊗ · · · ⊗ 1.
For α ∈ H∗T (X) with δT (α) =

∑
i α

1
i ⊗ α2

i , we set:

(qmqn)(α) :=
∑

qα1
i
[m]qα2

i
[n].

Using this notation together with KX = −ϵ1 − ϵ2 (KC2 is generated by dx ∧ dy), we get:

Theorem 1.6. [L] We have

c1(Tn) ∪ • = −1

6

∑
m1+m2+m3=0

: qm1qm2qm3 : (1)− 1

4

∑
m

(|m| − 1) : q−mqm : (KX),

where : : denotes the normal ordering.

This beautiful result was first proved by Lehn ([L]) in the non-equivariant setting for any X.
The key observation of [L] was a geometric action of Vir on M discussed in the next section.
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1.5. Virasoro action on M .
Let us first introduce another important Lie algebra:

Definition 1.2. The complex Lie algebra Vir with a basis {Ln, n ∈ Z, c} and a Lie bracket

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δ0n+m, [c, Ln] = 0, n,m ∈ Z,

is called the Virasoro algebra. Its representation V is of central charge c0 ∈ C if c|V = c0 · IdV .

Define operators Ln : H∗(X) → End(M) by Ln(α) := 1
2

∑
l∈Z : qlqn−l : (α). According

to [L, Theorem 3.3], those operators satisfy the following commutator relation:

(1) [Ln(α),Lm(β)] = (n−m)Ln+m(α ∪ β)− n3 − n

12
δ0n+m · ⟨c2(X), αβ⟩ · IdM .

Corollary 1.7. The operators {Ln(1)} define an action of the Virasoro algebra Vir on M of
central charge −e(X) (e(X) is the Euler number of X).

Remark 1.1. This result can be considered as a slight update of the classical Vir-action on the
Fock space over the Heisenberg algebra H (see [KR, Proposition 2.3]).

In [L], Theorem 1.6 is derived from the following commutator formula:

(2) [c1(Tn) ∪ •, qα[n]] = n · Ln(α) +
n(|n| − 1)

2
qKX∪α[n].

We refer the reader to [L] for more details on this elegant result.

Appendix A. Proof of Corollary 1.5

In this section we prove Corollary 1.5, that is

�k =
k

2

∑
m,n>0

mnpm+n∂pm∂pn +
k − 1

2

∑
m>0

m(m− 1)pm∂pm +
1

2

∑
m,n>0

(m+ n)pmpn∂pm+n .

It suffices to check this on the basis element pλ = pλ1pλ2 . . . pλs . We also work with ΛN , N ≫ 1,
so that the equality in Λ is obtained as the limit. Applying the differential operator on the
right hand side to pλ we obtain:

(3) k
∑

1≤i<j≤s

λiλjpλi+λjpλ1 . . . p̂λi . . . p̂λj . . . pλs +
k − 1

2

∑
1≤i≤s

λi(λi − 1)pλ1 . . . pλs+

∑
1≤i≤s

λi

2

c+d=λi∑
c,d>0

pcpdpλ1
. . . p̂λi

. . . pλs
.

Let us now compute �k
N (pλ), where we expand pλ as pλ = (

∑
j1
xλ1
j1
) · . . . · (

∑
js
xλs
js
):

(4)

k

2

∑
1≤r≤s

λr(λr − 1)pλ + k
∑

1≤r1<r2≤s

λr1λr2pλr1+r2
pλ1 . . . p̂λr1

. . . p̂λr2
. . . pλs

+

∑
1≤r≤s

λr

∑
1≤i≤N

j ̸=i∑
1≤j≤N

xλr+1
i

xi − xj
pλ1 . . . p̂λr . . . pλs − (λ1 + . . .+ λs)(N − 1)pλ.

To see that (4) simplifies to (3), use the following identity:∑
1≤i ̸=j≤N

xt+1
i

xi − xj
=

∑
1≤i<j≤N

(xt
i+xt−1

i xj+. . .+xix
t−1
j +xt

j) = (N−1)pt+
1

2

c+d=t∑
c,d>0

pcpd−
t− 1

2
pt.
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