GEOMETRIC REPRESENTATION THEORY OF THE HILBERT SCHEMES PART III

ALEXANDER TSYMBALIUK

ABSTRACT. Realizing the fixed point basis in the equivariant cohomology of $(\mathbb{C}^2)^{[n]}$ as the Jack polynomials, we prove an equivariant version of the Lehn theorem for $X = \mathbb{C}^2$.

1. The first Chern class of the tautological bundle

Let $\mathcal{Z}_n \subset X^{[n]} \times X$ be the universal family over $X^{[n]}$ and p denote its projection to $X^{[n]}$. Then $\mathcal{T}_n := p_* \mathcal{O}(\mathcal{Z}_n)$ is a rank n vector bundle over $X^{[n]}$, called the *tautological bundle*.¹ In this section we compute the cup product operator $c_1(\mathcal{T}_n) \cup \bullet : H^*_T(X^{[n]}) \to H^*_T(X^{[n]})$. This operator was first studied in [L] (in the non-equivariant setting). Our exposition follows [N].

1.1. Eigenvectors of $c_1(\mathfrak{T}_n) \cup$.

We start from a straightforward computation of $c_1(\mathcal{T}_n) \cup \bullet$ in the fixed point basis.

Lemma 1.1. The operator $c_1(\mathfrak{T}_n) \cup \bullet$ is diagonalizable in the fixed point basis:

$$c_1(\mathfrak{T}_n) \cup [\xi_{\lambda}] = -(n(\lambda)\epsilon_1 + n(\lambda^*)\epsilon_2)[\xi_{\lambda}],$$

where $n(\lambda) := \sum_{i} (i-1)\lambda_i$.

Proof. By definition, we have $c_1(\mathfrak{T}_n) \cup [\xi_{\lambda}] = c_1(\mathfrak{T}_{n|\xi_{\lambda}})[\xi_{\lambda}]$. It remains to notice that $c_1(\mathfrak{T}_{n|\xi_{\lambda}}) = \sum_{i=1}^{l(\lambda)} \sum_{j=1}^{\lambda_i} (-(i-1)\epsilon_1 - (j-1)\epsilon_2) = -n(\lambda)\epsilon_1 - n(\lambda^*)\epsilon_2.$

1.2. Laplace-Beltrami operator.

Definition 1.1. The linear operator $\Box_N^k : \Lambda_N \to \Lambda_N$, defined by

$$\Box_{N}^{k}(f) = \left(\frac{k}{2}\sum_{i=1}^{N} x_{i}^{2}\partial_{x_{i}}^{2} + \sum_{i \neq j} \frac{x_{i}^{2}}{x_{i} - x_{j}}\partial_{x_{i}} - r(N-1)\right), \ f \in \Lambda_{N}^{r},$$

is called the Laplace-Beltrami operator.

Exercise 1.2. Check $\rho_{N+1,N} \circ \Box_{N+1}^k = \Box_N^k \circ \rho_{N+1,N}$.

Hence, we can define a linear operator

$$\Box^k:\Lambda\to\Lambda,\ \Box^k:=\lim_{k\to\infty}\Box^k_N.$$

Those operators are actually diagonalizable in the basis of Jack polynomials:

Proposition 1.3. [M, Exercise VI.4.3(b)] We have: $\Box^k(P_{\lambda}^{(k)}) = (n(\lambda^*)k - n(\lambda)) \cdot P_{\lambda}^{(k)}$.

¹ The fiber of \mathfrak{T}_n at the codimension n ideal $I \subset \mathbb{C}[x, y]$ is identified with $\mathbb{C}[x, y]/I$. Moreover, its determinant $\wedge^n \mathfrak{T}_n$ is actually the line bundle $\mathfrak{O}_{(\mathbb{C}^2)[n]}(1)$ arising from the Proj-construction of $(\mathbb{C}^2)^{[n]}$.

ALEXANDER TSYMBALIUK

1.3. Geometric interpretation of \Box^k .

Let $\theta^T : \Lambda_{\mathbb{F}} \xrightarrow{\sim} M^T_{\text{loc}} = \oplus H^{T,BM}_*(X^{[n]})_{\text{loc}}$ be the isomorphism from the last talk. Identifying $H^{T,BM}_i(X^{[n]})$ with $H^{4n-i}_T(X^{[n]})$, consider a linear operator $D : \Lambda_{\mathbb{F}} \to \Lambda_{\mathbb{F}}$ which corresponds to $c_1(\mathfrak{T}_n) \cup \bullet : H^*_T(X^{[n]}) \to H^*_T(X^{[n]})$ under this isomorphism.

Theorem 1.4. We have: $D = \epsilon_1 \cdot \Box^k$.

Proof. According to the main result from the last time, we have:

$$\theta^T: P_{\lambda}^{(k)} \mapsto \epsilon_1^{-|\lambda|} c_{\lambda}(k)^{-1} \cdot [\xi_{\lambda}], \ k = -\epsilon_2/\epsilon_1.$$

Therefore D is determined by the condition $D(P_{\lambda}^{(k)}) = \epsilon_1(n(\lambda^*)k - n(\lambda))P_{\lambda}^{(k)}$. Combining with Proposition 1.3, we get the result. \square

The following is straightforward (see Appendix for the proof):

Corollary 1.5. Identifying $\Lambda_{\mathbb{C}} \simeq \mathbb{C}[p_1, p_2, \ldots]$, the operator \Box^k is given by

$$\Box^{k} = \frac{k}{2} \sum_{m,n>0} mnp_{m+n} \partial_{p_{m}} \partial_{p_{n}} + \frac{k-1}{2} \sum_{m>0} m(m-1)p_{m} \partial_{p_{m}} + \frac{1}{2} \sum_{m,n>0} (m+n)p_{m} p_{n} \partial_{p_{m+n}}.$$

1.4. Lehn's formula.

In this section we reformulate Corollary 1.5 in a more standard form.

Recall that under the isomorphism $\theta^T : \Lambda_{\mathbb{F}} \xrightarrow{\sim} M^T_{\text{loc}}$, the operators p_m and $-m\partial_{p_m}$ correspond to $\mathfrak{q}_{\epsilon_2}[-m] = Z_{\epsilon_2}[-m]$ and $\mathfrak{q}_{\epsilon_1}[m] = \frac{(-1)^m}{k} Z_{\epsilon_2}[m] = (-1)^{m-1} Z_{\epsilon_1}[m]$, respectively. Hence, the operator $c_1(\mathfrak{T}_n) \cup \bullet$ is given by the following formula:

$$c_1(\mathfrak{T}_n) \cup \bullet = \frac{\epsilon_1 + \epsilon_2}{2} \sum_{m>0} (m-1)\mathfrak{q}_{\epsilon_2}[-m]\mathfrak{q}_{\epsilon_1}[m] - \sum_{\alpha,n>0} \left(\frac{\epsilon_2}{2}\mathfrak{q}_{\epsilon_2}[-m-n]\mathfrak{q}_{\epsilon_1}[m]\mathfrak{q}_{\epsilon_1}[n] + \frac{\epsilon_1}{2}\mathfrak{q}_{\epsilon_2}[-m]\mathfrak{q}_{\epsilon_2}[-n]\mathfrak{q}_{\epsilon_1}[m+n]\right)$$

Let us now introduce $\delta_T : H^*_T(X) \to H^*_T(X) \otimes H^*_T(X)$ as the adjoint of the cup product $\cup: H^*_T(X) \otimes H^*_T(X) \to H^*_T(X)$ with respect to the intersection pairing. In other words, δ_T is a push-forward along the diagonal embedding $X \to X \times X$. This is a $H^*_T(\text{pt})$ -linear map with $\delta_T(1) = 1 \otimes [X] = \epsilon_1 \epsilon_2 \cdot 1 \otimes 1$. Iterating δ_T , we get $\delta_T^r(1) = (\epsilon_1 \epsilon_2)^r \cdot 1 \otimes \cdots \otimes 1$. For $\alpha \in H_T^*(X)$ with $\delta_T(\alpha) = \sum_i \alpha_i^1 \otimes \alpha_i^2$, we set:

$$(\mathfrak{q}_m\mathfrak{q}_n)(\alpha) := \sum \mathfrak{q}_{\alpha_i^1}[m]\mathfrak{q}_{\alpha_i^2}[n].$$

Using this notation together with $K_X = -\epsilon_1 - \epsilon_2$ ($K_{\mathbb{C}^2}$ is generated by $dx \wedge dy$), we get:

Theorem 1.6. [L] We have

 \overline{m}

$$c_1(\mathcal{T}_n) \cup \bullet = -\frac{1}{6} \sum_{m_1+m_2+m_3=0} : \mathfrak{q}_{m_1}\mathfrak{q}_{m_2}\mathfrak{q}_{m_3} : (1) - \frac{1}{4} \sum_m (|m|-1) : \mathfrak{q}_{-m}\mathfrak{q}_m : (K_X),$$

where :: denotes the normal ordering.

This beautiful result was first proved by Lehn ([L]) in the non-equivariant setting for any X. The key observation of [L] was a geometric action of Vir on M discussed in the next section.

 $\mathbf{2}$

1.5. Virasoro action on M.

Let us first introduce another important Lie algebra:

Definition 1.2. The complex Lie algebra Vir with a basis $\{L_n, n \in \mathbb{Z}, c\}$ and a Lie bracket

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m}^0, \ [c, L_n] = 0, \ n, m \in \mathbb{Z},$$

is called the Virasoro algebra. Its representation V is of central charge $c_0 \in \mathbb{C}$ if $c_{|V} = c_0 \cdot \mathrm{Id}_V$.

Define operators $\mathcal{L}_n : H^*(X) \to \operatorname{End}(M)$ by $\mathcal{L}_n(\alpha) := \frac{1}{2} \sum_{l \in \mathbb{Z}} : \mathfrak{q}_l \mathfrak{q}_{n-l} : (\alpha)$. According to [L, Theorem 3.3], those operators satisfy the following commutator relation:

(1)
$$[\mathcal{L}_n(\alpha), \mathcal{L}_m(\beta)] = (n-m)\mathcal{L}_{n+m}(\alpha \cup \beta) - \frac{n^3 - n}{12}\delta^0_{n+m} \cdot \langle c_2(X), \alpha\beta \rangle \cdot \mathrm{Id}_M .$$

Corollary 1.7. The operators $\{\mathcal{L}_n(1)\}$ define an action of the Virasoro algebra Vir on M of central charge -e(X) (e(X) is the Euler number of X).

Remark 1.1. This result can be considered as a slight update of the classical Vir-action on the Fock space over the Heisenberg algebra \mathcal{H} (see [KR, Proposition 2.3]).

In [L], Theorem 1.6 is derived from the following commutator formula:

(2)
$$[c_1(\mathfrak{T}_n) \cup \bullet, \mathfrak{q}_{\alpha}[n]] = n \cdot \mathcal{L}_n(\alpha) + \frac{n(|n|-1)}{2} \mathfrak{q}_{K_X \cup \alpha}[n].$$

We refer the reader to [L] for more details on this elegant result.

Appendix A. Proof of Corollary 1.5

In this section we prove Corollary 1.5, that is

$$\Box^{k} = \frac{k}{2} \sum_{m,n>0} mnp_{m+n} \partial_{p_{m}} \partial_{p_{n}} + \frac{k-1}{2} \sum_{m>0} m(m-1)p_{m} \partial_{p_{m}} + \frac{1}{2} \sum_{m,n>0} (m+n)p_{m} p_{n} \partial_{p_{m+n}}.$$

It suffices to check this on the basis element $p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \dots p_{\lambda_s}$. We also work with $\Lambda_N, N \gg 1$, so that the equality in Λ is obtained as the limit. Applying the differential operator on the right hand side to p_{λ} we obtain:

$$(3) \quad k \sum_{1 \le i < j \le s} \lambda_i \lambda_j p_{\lambda_i + \lambda_j} p_{\lambda_1} \dots \widehat{p_{\lambda_i}} \dots \widehat{p_{\lambda_j}} \dots p_{\lambda_s} + \frac{k-1}{2} \sum_{1 \le i \le s} \lambda_i (\lambda_i - 1) p_{\lambda_1} \dots p_{\lambda_s} + \sum_{1 \le i \le s} \frac{\lambda_i}{2} \sum_{c,d>0}^{c+d=\lambda_i} p_c p_d p_{\lambda_1} \dots \widehat{p_{\lambda_i}} \dots p_{\lambda_s}.$$

Let us now compute $\Box_N^k(p_\lambda)$, where we expand p_λ as $p_\lambda = (\sum_{j_1} x_{j_1}^{\lambda_1}) \cdot \ldots \cdot (\sum_{j_s} x_{j_s}^{\lambda_s})$:

$$(4) \quad \left(\frac{k}{2}\sum_{1\leq r\leq s}\lambda_r(\lambda_r-1)p_{\lambda}+k\sum_{1\leq r_1< r_2\leq s}\lambda_{r_1}\lambda_{r_2}p_{\lambda_{r_1}+r_2}p_{\lambda_1}\dots\widehat{p_{\lambda_{r_1}}}\dots\widehat{p_{\lambda_{r_2}}}\dots p_{\lambda_s}\right)+\sum_{1\leq r\leq s}\lambda_r\sum_{1\leq i\leq N}\sum_{1\leq j\leq N}^{j\neq i}\frac{x_i^{\lambda_r+1}}{x_i-x_j}p_{\lambda_1}\dots\widehat{p_{\lambda_r}}\dots p_{\lambda_s}-(\lambda_1+\dots+\lambda_s)(N-1)p_{\lambda}.$$

To see that (4) simplifies to (3), use the following identity:

$$\sum_{1 \le i \ne j \le N} \frac{x_i^{t+1}}{x_i - x_j} = \sum_{1 \le i < j \le N} (x_i^t + x_i^{t-1} x_j + \ldots + x_i x_j^{t-1} + x_j^t) = (N-1)p_t + \frac{1}{2} \sum_{c,d>0}^{c+d=t} p_c p_d - \frac{t-1}{2} p_t.$$

ALEXANDER TSYMBALIUK

References

- [KR] V. Kac and A. Raina, Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, World Sci. (1987), ISBN 9971-50-395-6.
- M. Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999), no. 1, 157–207; arXiv/9803091.
- [M] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monographs, Oxford Univ. Press (1995), ISBN 0-19-853489-2.
- [N] H. Nakajima, More lectures on Hilbert schemes of points on surfaces, arXiv/1401.6782.

DEPARTMENT OF MATHEMATICS, MIT, 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA 02139, USA *E-mail address:* sasha_ts@mit.edu